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INTRODUCTION 

The purpose of the containment vessel in a nuclear power plant is to 

prevent the release to the atmosphere of any radioactivity which may acci

dentally be present within the vessel. The probability that the contain

ment will not leak radioactivity must be acceptably low. The overall ob

jective of this research, of which this dissertation forms a part, is to 

assess the uncertainty of the containment vessel resistance for nuclear 

power plants. The specific objective of the study presented herein is to 

develop simplified methods to describe the statistical characteristics of 

the resistance of steel containment vessels to internal static uniform and 

internal high intensity localized loading. This dissertation is composed 

of three papers, two of which have been published and the third which will 

be submitted for publication. 

Part I. " Simplified Techniques for the Inelastic Analysis of Stif

fened Shells Under Uniform Static Internal Pressure." The author intends 

to submit this paper to the Journal of Pressure Vessel Technology, Ameri

can Society of Mechanical Engineers. This paper is devoted to developing 

simplified methods for predicting the resistance of stiffened axisymmetric 

shells under uniform internal static pressure. The development of these 

methods is based upon limit analysis theory and takes into account the ef

fect of the large deformations. Finite element analysis is used to guide 

and calibrate these methods. 
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Part II. "Simplified Dynamic Analysis for Internal Locally Loaded 

Shells" was presented and published in the Proceedings of the 

International Workshop on Containment Integrity, which was held in 

Washington, D.C., USA, in June 1982. This paper concentrates on the 

dynamic analysis of unstiffened axisymmetric structures subjected to 

internal localized dynamic loads. Simplified methods for the prediction 

of the maximum strain ductility of cylindrical and spherical shells as 

well as circular plates under high intensity localized pulse are proposed. 

The methods are developed by idealizing the structure as an elastic-

perfectly plastic single degree of freedom model and taking into 

consideration the effects of large deformations. Finite element analysis 

is used to guide and calibrate the proposed methods. 

Part III. "Reliability Assessment of Containment Resistance" was 

presented and published in the Proceedings of the Pressure Vessel and 

Piping Conference sessions on pressure safety and reliability, American 

Society of Mechanical Engineering, which was held in Orlando, Florida, 

USA, in July 1982. This paper summarizes some reliability techniques and 

demonstrates their use to assess the uncertainty of the containment vessel 

resistance. A Monte Carlo simulation technique, an advanced second moment 

method and a simplified approach for practical analyses are proposed and 

compared. 

In general, each paper provides several numerical examples which 

explain and demonstrate the use of the proposed simplified methods. 

Additionally, each paper includes a bibliography related to the specific 
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topic. Also, the supplementary appendices for the papers provide more de

tails regarding some specific problems. For example, the Part I appendix 

gives the details for the prediction of the limit pressure for internally 

loaded stiffened conical shells. Also, the appendix of Part II summa

rizes studies conducted to investigate the effect of the finite element 

mesh as well as the time step size on the nonlinear transient dynamic 

analysis results. 
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PART I. SIMPLIFIED TECHNIQUES FOR THE INELASTIC ANALYSIS OF 
STIFFENED SHELLS UNDER UNIFORM STATIC INTERNAL PRESSURE 

Abstract 

Simplified methods for predicting the resistance of stiffened 

axisyranetric shells are presented. A uniform internal static pressure 

is considered and strain ductility is taken as the failure criteria. 

The development of these methods is based upon limit analysis theory 

and takes into account the effects of large deformations. Twelve axi-

symmetric models are analyzed using the finite element technique and 

the results are used in the calibration of the simplified solution. An 

analysis of a typical pressure vessel is performed by the proposed and 

the finite element methods. The results of the pressure vessel analy

sis, as well as those for the twelve models, illustrate the agreement 

between the finite element and the simplified methods. 

Introduction 

The problem of evaluating the resistance of stiffened axisymmetric 

shells under uniform internal pressure is an important one, particular

ly with regard to steel containment vessels for nuclear power plants. 

The solution could require a three-dimensional finite element analysis 

which takes into account material and geometric nonlinear effects. 

While this is theoretically possible, it would be expensive in terms of 

computer time; therefore, another alternative is useful. Additional

ly, finite element models are difficult to incorporate into reliability 

predictions. An alternative approach is to use basic shell theory in 

conjunction with the limit analysis techniques to solve for the result
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ing shell resistance. Several analytical studies have dealt with vari

ous methods of computing the resistance of stiffened axisymmetric 

shells. Most of these studies have evaluated the limit pressure for 

such types of structures using the Tresca yield criteria and ignoring 

the effect of geometric deformations. Paul and Hodge (1) found an 

expression for the limit pressure of a uniformly loaded cylinder with 

simply supported ends. The problem of a cylindrical shell built-in at 

one end, free at the other and subjected to uniform pressure along with 

an independent axial load was studied by Oant (2) and Hodge and 

Panarelli (3). A solution of an axi symmetric shell jointed at both 

ends to a rigid plate is given in (4). Cylindrical shells without 

axial load and with purely longitudinal ribs were treated by Biron and 

Sawczuk (5). A summary of the results obtained by these investigators 

and others are presented in Ref. (6). In this study, a method which is 

based upon the von Mises yield hypothesis and which considers material 

and geometric nonlinear effects is proposed. 

The following study represents a portion of a total program, the 

objective of which is to assess the uncertainly of steel containment 

vessel resistance. Typically these containments are stiffened axi sym

metric steel shells. To attain this goal, simplified analytical solu

tions based upon the formation of a limit mechanism were established. 

The development and calibration of these methods for stiffened cylin

drical shells is given in detail. Equations for the prediction of the 

resistance of stiffened conical, ellipsoidal, spherical and tori spher

ical shells are also given. Furthermore, a summary of the analysis of 
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a typical containment by the finite element method and the simplified 

approach is presented. In the total program, these simplified methods 

have been incorporated into a reliability assessment. 

Contai nment Resi stance 

Failure of a containment is considered to occur when leakage of 

the containment occurs. Leakage will occur when a crack passes through 

the entire plate thickness of the containment vessel walls. The ap

proach adopted by many investigators (7,8) is to assume that failure 

(leakage) will take place in the shell when deformation (displacement 

and/or strains) become large. 

The question of whether to use displacement or strain as a basis 

for defining failure is certainly debatable (7). The ASME Code has 

provisions that allow the use of either or both (9,10). Highly local

ized bending strains have little effect on the collapse strength and 

may not be indicative of structure failure (8). On the other hand, 

strains are certainly more indicative of material distress than dis

placement. In this work strain, more particularly, the maximum circum

ferential membrane strain in the axisymmetric containment vessel, is 

selected as basis of failure indication. 

To prevent the occurrence of large deformation or leakage in such 

vessels, it is necessary to restrict the magnitude of the maximum 

strain. The pressure at which the maximum allowable strain is reached 

is termed herein the containment vessel resistance or the plastic col

lapse pressure. Reference 7 recommends a value of two as the lower 
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limit of the strain ductility capacity (strain ductility = maximum 

strain/yield strain). The corresponding pressure is designated as 

Pzey. (See Fig. 1.) 

Simplified Static Analysis of Stiffened Axisymmetric Shells 

General 

The formulation of the simplified analysis techniques is based 

upon an assumed suitable deformed shape of the structure and limit 

analysis methods. A rigid-perfectly plastic material is considered. 

The following formulation differs from classical limit analysis in that 

large deformations are permitted. The limit pressure so calculated 

will be denoted as Pq. Usually, there is a little or no difference 

between the plastic collapse pressure, p^^, and the limit pres

sure, Pq, for rigid or elastic perfectly plastic materials. In these 

cases, the limit pressure can be employed as a good approximation to 

the vessel resistance (7,8). In the following discussion, the evalua

tion of the limit pressure for a stiffened cylinder under uniform in

ternal pressure is presented. Finite element analyses are used to 

verify the predicted resistance of such structures. 

A stiffened cylindrical shell can be considered as a number of 

rectangular curved panels framed by a ring sector and a stringer sec

tion (see Fig. 2). Failure modes for this type of structure can be 

identified as: (1) General Failure; (2) Inter-ring Failure; and (3) 

Panel Failure. The first mode is considered to occur when the entire 

panel expands in the radial direction uniformly as shown in Fig. 3. 

The inter-ring failure mode occurs when the radial deformation of the 
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vertical stiffeners and the shell skin increase, while the ring stif-

fener deformation remains small, i.e., within the elastic range (see 

Fig. 4). The third failure lype occurs when the shell skin bulges 

outward while the ring and stringer reinforcement remain in the elastic 

range. For the range of stringer dimension considered herein, the 

third failure mode is not likely to occur. This will be approximately 

verified later in this work. 

For an axisymmetrically loaded cylindrical shell with large defor

mation, the membrane strain-displacement relationships are (9): 

'1' 

^ 6 =  F  1 2 )  

in which and are the meridional and circumferential membrane 

strain, respectively, w is the displacement perpendicular to the shell 

surface; u represents the meridional displacement (see Fig. 2); r is 

the shell midsurface radius; and x is the cylinder meridional coordi

nate. 

The internal energy, U, dissipated per each panel is written as: 

U = ^ ̂ 0 dv + ; fg dv (3) 

r s 
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where f,j, and fe are the shell meridional and circumferential mem

brane stresses, while v represents the material volume. The stresses 

fy. and fg, respectively, are the ring and longitudinal stiffener 

stresses, while v^. and Vg are the ring and longitudinal stiffener 

volumes, respectively. The energy due to bending strains will be con

sidered as concentrated at plastic hinges. 

The external work for a uniform internal pressure loading, p, can 

be expressed as 

where A is the surface over which the load is applied. The second term 

indicates the work of the meridional membrane force and the moment 

at the plastic hinges at the panel boundaries (N^ and are forces 

per unit length). The quantity û denotes the change in the length of 

the panel and e is the slope of the deformed shape at the plastic 

The membrane strains can be written, according to the deformation 

strain theory of plasticity (6,10), as follows 

W = /  p w dA ± Zvr (N, û + M, 0) boundary (4) 

hinges. 

E ̂  -  V2> (5) 

S = C (f; - f/2, (6)  
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in which e^, e© are the meridional and circumferential strains, 

respectively, while C denotes a proportionality constant. The von 

Mises yield criteria (6,10) is employed in this work to relate the 

membrane stresses to the material yield strength, Fy, as: 

fe + f*  -  fef* = Fy (7) 

Analysis of the general failure mode 

The deformed shape of this mode is illustrated in Fig. 3. For 

this case, the circumferential strain is assumed to be constant, while 

the meridional strain is neglected, or 

=8= G (8) 

e  =  0  ( 9 )  
<P 

where e is the maximum allowable strain. The plasticity conditions of 

Eqs. 5 and 7 in conjunction with the assumption in Eq. 9 yields the 

cylinder stresses as; 
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In the same woy, the ring stresses are found asi 

Substitution of the above relationships into Eqs. 3 and 4 results in 

in which t represents the containment wall thickness and is the ring 

stiffener cross-sectional area. Note that the energy dissipated in the 

stringer and the work done by the membrane forces and (bound

ary forces) are zero because of the assumed deformed shape. For an 

elastic-perfectly plastic material, Eq. 13 can be modified as follows. 

Since the stress strain relationship is linear in the elastic region, 

the strain energy, Ug, which is accumulated up to yield strain, sy, 

can be approximated as: 

(13) 

W = 2% r2 $1 p e (14) 

(15) 

e = e y 
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Subtracting the complementary elastic energy from the energy given by 

Eq. 13, the internal energy for an elastic-perfectly plastic material 

can be approximated as:: 

U - 2ir r Si t Fy + •j^)(e - -g- e^) (16) 

When Eqs. 13 or 16 and Eq. 14 are substituted into the following 

minimization principal relationship 

- | - - |=0 (17) 

An expression of the limit pressure, pg, for the general failure mode 

is found as: 

t F Al 

Analysis of the inter-ring failure mode 

Figure 4 shows the assumed deformed shape of this failure mode. 

In this case, the circumferential strains are assumed to vary 

parabolically, while the longitudinal strain is assumed negligible, or 

' e [1 - (19) 
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e,= 0 (20) 
9 

where e represents the circumferential strain midwc^y between the rings, 

i.e., at X equal zero. With the strain displacement relation given in 

Eqs. 1 and 2, the radial and meridional displacements, w and u, respec

tively, for this failure mode are: 

w = er [1 - (1^)^] (21) 
Si 

„  =  . 3 2 e ^  ( 2 2 ,  

Plastic hinges are assumed to form at the upper and lower boundaries of 

the panel. The rotation, 8, is given by 

iL 
X = ± 2 

4 er 
"sT (23) 

The change in the panel length, 0, calculated using Eq. 22, is 

(24) 
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Substituting Eqs. 10, 11, 19, 20, 21 and 23 into Eqs. 3 and 4 results 

in the following energy and work relationships 

8 IT rte Si F 
U = 7= ^ (25) 

3 l/f 

for a rigid-perfectly plastic material. Following the discussion men

tioned in the preceding section, the dissipated energy for an elastic-

perfectly plastic material can be approximated as: 

Sir rt SiF 
U = z=r^ (e - i O (26) 

3 W 2 y 

The external work, W, given in Eq. 4 becomes 

. 4 r e 12 
W = 4* 3 ^ (si p (27) 

O a 1 51 

Equilibrium in the vertical direction results in 

(28) 

The effect of the axial force, N^, on the section plastic moment 

capacity, M^, is illustrated in Fig. 5. The yield value of is 

expressed as; 
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(29) 

where and are the stringer cross-sectional area and spacing, 

respectively. Since N,j,/Ny is of the order of 1/V3~(see Eq. 10), 

the effect of the axial force on the plastic moment capacity of a 

str inger st i f fened cyl inder can be assumed insignif icant (see Fig. 5).  

For an unstiffened cylinder, the last term in Eq. 27 is quite small and 

hence the variation of the plastic moment will not significantly affect 

the limit pressure. With this in mind, the moment at the plastic 

hinges will be taken equal to the full plastic moment, Mp, i.e.. 

(30) 

where Mp is written asc 

(31) 

in which 2 is the plastic section modulus 

unit circumference and is calculated with 

surface as: 

of the shell and stringer per 

respect to the shell middle 
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where c denotes the eccentricity of the stringer centroid measured from 

the shell middle surface. 

Substituting Eqs. 28 and 31 into Eq. 26 and using the relation 

given in Eq. 17 yields 

where e is the circumferential membrane strain midway between rings. 

The strain e is taken as: 

e = 2 Ey (34) 

which corresponds to a strain ductility capacity of two. Introducing 

Eq. 34 into Eq. 33 gives a limit pressure for the inter-ring mode as: 

,2 . 12 Zr, 

(1 rrr-i 

Notice that the parenthetical term in the denominator represents the 

effect of large deformations. This term would be one for small dis

placement limit pressures. 



www.manaraa.com

17 

Calibration of the Simplified Methods 

Before proceeding to the application of the foregoing approximate 

analyses, it is appropriate to verify the validity of the methods. 

Since several assumptions are typically involved in the formulation and 

analysis of the proposed approaches, they will be verified by comparing 

the results to finite elements. 

The ANSYS (11) finite element computer program was used in this 

study to perform the finite element analysis. Material and geometric 

nonlinearities were considered in the analysis. Material nonlinearly 

was included in the analysis using what is called classical bilinear 

kinematic hardening option in the ANSYS program. An elastic perfectly 

plastic material was used. A convergence criterion on plastic strain 

increment/elastic strain of 0-1 was employed. Geometric nonlinearity 

effects were treated using the stress stiffening option provided in the 

program. Reference 12 concludes that this option adequately accounts 

for large displacement effects for axisymmetric shells under uniform 

static pressure. The axisymmetric structure was modeled by a number of 

isoparametric quadrilateral eight node elements (four corner and four 

midside nodes). This element is referred to as STIF 82 in the ANSYS 

element library. An element length of about was used. The 

reader is referred to Ref. (12) for an extensive study and a comparison 

of the results when using different element size and analysis options. 

In the following, each of the three previously defined failure 

modes is studied individually. The nonaxisymmetric behavior which 

results from the presence of the longitudinal reinforcement was exam
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ined first. One typical panel (see Fig. 2) of the shell skin with the 

framing stiffeners was analyzed. The cylinder has an r/t ratio of 

1200; the ring and longitudinal stiffeners are spaced at 250 inches and 

6 degrees, respectively. The circumferential and stringer areas were 

selected such that 

These areas and spacings were chosen as upper practical limits for 

containment vessels to increase the likelihood of a panel failure 

mode. 

The finite element three-dimensional solution was accomplished 

using a triangular shell element (six degrees of freedom per node). 

Only one-quarter of the panel need be analyzed because of the panel 

symmetry condit ions (see Fig. 6).  

An axisymmetric approximation to this panel was also analyzed by 

finite element methods. The cylindrical shell and ring stiffeners were 

modeled using the isoparametric axi symmetric solid elements, while a 

beam element was used to idealize the stringer (see Fig. 7). The cyl

inder and stringer were connected using linear constraint equations 

which simulate a rigid connection. 

=1= sTt = 0-2 (36) 

(37) 
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Figure 8 contains plots of internal radial pressure versus radial 

displacement at locations 1, 2, 3 and 4 of the three-dimensional model 

(Fig. 6). Radial displacements at Points 5 and 6 of Fig. 7 are also 

shown in Fig. 8. The pressure-displacement relationship of Points 3 

and 4 coincides very closely with that of Point 6 (axisymnetric model). 

Although the difference between radial displacements of Points 1 and 2 

is noticeable in the linear portion, there is little difference in the 

non-linear range (near the plastic pressure). Moreover, the radial 

displacement of Point 5 (from the approximate axisymmetric finite ele

ment model) is close to that of Points 1 and 2 for the more analytical

ly correct three-dimensional analysis. In the nonlinear range, those 

two curves are almost the same. Since there is little difference in 

the radial displacement predicted by the three-dimensional and the 

axi symmetric analysis of the same panel, the axisymmetric finite ele

ment idealization will be used throughout the remainder of this study. 

In other words, the circumferential variation of the displacement and 

stress is not significant and can be neglected for this range of struc

tural parameters. Large savings in computer time will result from this 

finding. Additionally, since the circumferential variation in dis

placement is small, the bulging panel failure mode defined previously 

cannot occur for this range of geometries, i.e., for stringers spaced 

at less than 6 degrees and 03 (Eq. 37) less than 0.2. 

The other two possible failure modes, i.e., the general and inter

ring modes, were also examined. A total of six models with different 

geometric parameters were used for each mode. The geometric parameters 
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employed for each model are tabulated in Tables 1 and 2 for the general 

and the inter-ring failure modes, respectively. Pressure versus maxi

mum circumferential membrane strain was predicted and P2ey was 

evaluated at twice the elastic strain. 

Figures 9 and 10 show the pressure strain curves for the A, B and 

C models as a sample for the general and inter-ring failure modes, re

spectively. The calculated plastic pressure, Pggy, for those two 

modes are given in Tables 1 and 2. The limit pressure p^ predicted 

using Eqs. 18 and 35 for the general and the inter-ring failure modes, 

respectively, is also tabulated. 

The calculated limit pressure is in agreement with that found 

using the finite element analysis. The longitudinal stiffener does not 

have a significant effect on the calculated plastic pressure when fail

ure is caused by yielding of the rings (compare Model A versus B and 

Eq. 18). Also, in the general failure mode, and for a constant a^, the 

ring spacing has little effect on the predicted plastic pressure as 

illustrated by Models C versus D and that predicted by Eq. 18. The 

finite element results for the inter-ring failure mode indicated that 

the shell and stringer elements midway between the rings were stressed 

uniformly at yield, while the stringer stress is rectangularly distrib

uted at the rings. In other words, bending stresses are significant at 

the circumferential stiffeners. Figure 11 illustrates the deformed 

shape of Model A at a pressure of 80 psi (.55 MN/tn^). The figure shows 

that the slope is continuous midway between the rings and that a slope 

discontinuity occurs at the rings. From these observations, it can be 
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concluded that there is a circumferential plastic hinge which forms at 

each ring elevation while there is zero bending energy midway between 

the rings. One can also see the resemblance between the deformed shape 

in Fig. 11 and the deformed shape given by Eq. 21. 

Stiffened conical shell 

The development of the simplified methods for stiffened conical 

shells is similar to that for the stiffened cylinder. Formulas for the 

prediction of the limit pressure are listed herein. The derivations of 

these equations are given in the Appendix. For the general failure 

mode type (rings and shell plating yield), the limit pressure is given 

as: 

Limit Pressure for Other Shell Structures 

r (38) 

where 

ri + rz 
r = o- ' w; 2 sin* (39) 

r2 - ri 
~ r sin* (40) 
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in which and are the upper and lower radii of the cone segment, 

respectively (see Fig. 12), r^ is the ring radius and * is the slope 

of the shell meridian line. 

The limit pressure for the inter-ring failure mode is given as 

"o = ' p/ (41, 

1 + -JJC - 8 P2^u Iff 

where 

.. .V'"' • 

r z  - ri 
Pj = 

+ r 2 ^ ) / 2  

_ Z, rgZ + Z2 r^z 
Z = 

( r ^  +  r 2 )  

(43) 

(44) 

in which L is the ring spacing measured in the meridional direction, 

r^ and r^ are the shell segment radii as shown in Fig. 13. The plastic 

section moduli per unit circumferential length at the top and bottom 

boundaries are Z^ and Zg, respectively. Note that the equations of the 
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Stiffened conical shell specialize to the cylindrical case discussed 

early in this study. 

Containment vessel heads 

The following section focuses on the evaluation of the containment 

head resistance subjected to uniform internal static pressure. Numer

ous studies (7, 9, 13, 14, 15) have been conducted to investigate the 

strength of different head types. A brief summary of this work is 

presented herein. 

Hemispherical heads The limit pressure for a hemispherical 

shell is obtained as 

2 F t 
Po = --f*-- (45) 

2:1 Ellipsoidal heads The following section summarizes the 

study conducted by Galletly and Aylward (13). Failure of ellipsoidal 

heads can occur by two possible failure modes: (1) elastic or elastic-

plastic buckling; or (2) plastic collapse failure. In the first fail

ure mode, wrinkles or lobes form around the circumference of the shell 

in the vicinity of the knuckle. The asymmetric buckling is caused by 

circumferential compressive stresses induced in the shell by inward 

displacement in the knuckle vicinity (13). In the plastic collapse 

mode, an axisymmetric limit mechanism is formed with accompanying large 

displacement. This mode provides a limit pressure similar to that dis-
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cussed early in this work. The resistance of these two failure modes 

are given in Ref. (13) as: 

1 . 2 5  

Per = fy '2f' 

for the elastic-plastic asymmetric buckling, and 

Fyt 
Pq = p (1 + 50 e ) (47) 

for the axisymmetric plastic collapse mode. Limits on the above equa

tion are : 

30 ksi (207 MN/m^) < Fy < 60 ksi (414 W/m^) (48) 

250 < r/t < 750 (49) 

Tori spherical heads Failure of tori spherical heads can also 

occur by asymmetric buckling in the knuckle region or by plastic col

lapse. References 14 and 15 give equations for each of these possible 

failure modes. For the asymmetric buckling mode, the resistance is 

given as: 
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cr 

285 (1-125 e ) { r J 2 r )  
i y  ^ 

0 . 8 4  

1 . 1  
(50) 

12.6 Fy (1 + 240 ey)(r^/2r) 
1 . 0 4  

(4)' 
0 9  

(51) 

where 

a = 
0.79 

1.10 

IF 

W  

> 1 

< 1 

(52) 

in which r^ and Rg are the toroidal (knuckle) and spherical (crown) 

radii of the torisphere, respectively. The limits of the above equa

tions are: 

20 ksi (138 HN/m2)<Fy < 75 ksi (517.5 MN/m^) (53) 

250 < Y < 750 (54) 

0.06 < < 0.18 

0.75 < 1.5 

(55) 

(56) 



www.manaraa.com

26 

Applications 

To demonstrate the use of the methods, the containment vessel 

shown in Fig. 14 was analyzed. This containment is fairly typical. 

The containment consists of several simple axisymmetric sections placed 

together. A torispherical head with toroidal and spherical radii of 

5.42 ft. (1.65 m) and 28.67 ft. (8.74 m), respectively, was used to 

cover the containment. In addition, part of the containment is circum-

ferentially and longitudinally stiffened as shown in Fig. 14. The 

containment resistance was analyzed twice: (1) with the ANSYS finite 

element program and (2) with the simplified approaches presented here

in. 

The containment shell and the ring stiffeners were modeled for the 

finite element using axisymmetric solid elements. Beam elements were 

employed to idealize the longitudinal stiffeners. The shell-stringer 

connection was modeled by relating the displacement of the vessel nodes 

to those of the stiffeners with constraint equations. No element size 

in the shell exceedsVrt/2. Also, the nodes along the containment base 

were completely restrained. A material yield strength of 41.8 ksi 

(288.42 MN/m4 and modulus of elasticity of 29,000 ksi (200,100 MN/m^) 

were used. The uniform internal pressure was increased in even steps 

of 20 psi (0.138 MN/m^) until a pressure of 100 psi (0.690 MN/m^) was 

reached. The size of the load step was then reduced to obtain conver

gence of the nonlinear solution. The solution was continued until a 

pressure of 134 psi (0.925 MN/m^) was reached. At this point, the 

maximum circumferential membrane strain reached twice the yield strain. 
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i.e., a ductility factor of two. The resulting pressure-strain, 

pressure-displacement and deformed shape are shown in Figs. 15, 16 and 

17, respectively. The maximum radial displacement and hoop strain 

occurred in the unstiffened portion of the lower cylindrical section as 

illustrated in Fig. 17. The containment resistance, pggy, is pre

dicted as 134 psi (0.925 MN/cm^). For the reader's interest, the total 

computer (CDC 7600) time for the solution was 2950 cpu seconds. 

The simplified methods outlined previously were also used to pre

dict the limit pressure for the containment vessel in Fig. 14. More 

specifically, Eqs. 18, 35, 38, 41, 50 and 51 were employed to analyze 

the possible thirty failure modes. Minimum containment wall thicknes

ses were used when shell thickness varied within the region of the 

failure mode. From the results given in Table 3, the containment re

sistance based on the simplified analysis is 133 psi (0.918 MN/m^). 

Also, the controlling failure mode occurred in the stringer stiffened 

portion of the lower cylindrical section (Region 14). This resistance 

was predicted using Eq. 35 considering a stringer stiffened cylinder 

with a length of 397 in. (10.08 m). 

Conclusions 

Simplified approaches were developed for the analysis of stiffened 

axisymmetric shells under uniform static internal pressure. The meth

ods are based on classical limit analysis theory and take into account 

the effects of large deformations. Finite element techniques were used 

to guide the formulation of these methods. Twelve axi symmetric models 
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were analyzed using the finite element technique and simplified ap

proaches. An actual containment vessel analysis is also presented to 

illustrate the applicability of the methods. For a static uniform 

internal pressure, the simplified methods give good results when ap

plied to axisymmetric stiffened shells. The methods are sufficiently 

accurate to define the limit pressure of such structures. These ap

proaches provide the limit pressure for each possible failure mode. 

This would clearly be excessively expensive to predict by the finite 

element technique, which typically yields only the mode with the mini

mum resistance. (Reliability analysis techniques usually require the 

prediction of all failure modes.) 

Appendix. Simplified Analysis of Stiffened Conical Shells 

The development of the simplified methods for stiffened conical 

shells is closely parallel to that of stiffened cylinders. For a 

conical surface, the strain displacement relationships, Eqs. 1 and 2, 

specialize to 

=8 = % + 7 tan* (A-1) 

(A-2) 

where u, w, x and * are shown in Fig. 12. 
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Analysis of the general failure mode 

The deformed shape of this mode is shown in Fig. 12. For this 

mode, the circumferential and meridional strains are taken asi 

Substituting Eqs. A-3 and A-4 into Eqs. A-1 and A-2 yields the 

following displacements 

in which is the distance measured from the cone apex to the lower 

edge of the cone segment (see Fig. 12). Note that the term dw/dx has 

been neglected with respect to tan* in Eq. A-5. 

The internal energy, U, dissipated per each panel, can be written 

as: 

(A-3) 

(A-4) 

e X 
tan* (A-5) 

(A-6) 

U = / fgEg dV + / f^ Eg dV (A-7) 

where n^. is the number of the ring stiffeners within the panel. No 

energy is stored in the stringers for this mode. The shell circumfer
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ential stresses, fg, and the ring stresses, f^, are those as given 

in Eqs. 11 and 12, respectively. 

The external work for a uniform internal pressure can be written 

as: 

W  =  /  p w d A  ± 2  n r ^ N  i J  j (A-8) 
A ' boundary 

in which u represents the change in the inclined length of the cone 

segment, L, and is expressed as: 

2 tanZ* 

Note that there is no bending energy considered in this failure mode. 

Substituting the necessary equations into Eqs. A-7 and A-8 and using 

the minimization principle given in Eq. 17 yields the resistance of the 

general failure mode of a stiffened conical shell as: 

P o °  

+ -IF - 2 tan%*) 

where 

+ r. 
r = 

2 sin* (A-ll) 
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~ r sin* (A-12) 

(A-13) 

in which is the ring radius (see Fig. 12). The effect of the 

strain, e, in the denominator of Eq. A-10 can be neglected, particular

ly when the angle ^ is greater than 45°. This is most likely the case 

for containment vessels. Omitting this term, Eq. A-10 becomes 

Analysis of inter-ring failure mode 

For the inter-ring failure mode, the displacement of the ring is 

considered negligible in comparison to that of the shell skin. Figure 

13 shows the assumed deformed shape of the inter-ring failure mode. In 

this case, the circumferential membrane strain is assumed to vary 

parabolically and the meridional strain is assumed negligible, or 

r (A-14) 

(A-16) 

(A-15) 
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in which x' is measured from the center of the segment (Fig. 13), and 

is written as ; 

x' = X - r tan* (A-17) 

Integration of the strain-displacement relationship in Eqs. A-1 and A-2 

yields the following displacements: 

2 

w = [1 - (^* ) ] (x* + r tan#) (A-18) 

- 4^] (A-19) 

The term, dw/dx, has been neglected with respect to tan* in the above 

development. Equation A-19 can be integrated to give the changes in 

the upper and lower halves of the cone segment length. These changes 

are written as; 

û2,ûi = Î I e2L C± I cotz* + ^ cot* + (A-20) 

where the subscripts i and 2 are used for the upper and lower halves of 

the cone segment, respectively. The rotation of the plastic hinges at 

the upper and lower boundaries, respectively, are: 
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01 = 

0O = 

4 e n 

-4 e r2 

(A-21) 

(A-22) 

The moments at the plastic hinges are taken as the full plastic moment 

(Eqs. 30 and 31), Mp^ and Mp^. Also, for uniform internal pressure, 

the meridional membrane forces at the upper and lower boundaries, 

respectively, are: 

P ri 

*1 ~ 2 sin*i 

_ P ^2 
4)2 ~ 2 sin(|>2 

(A-23) 

(A-24) 

The internal membrane energy for this failure mode is written as: 

U = / f g 60 dV (A-25) 

where v represents the shell plate volume. The external work can be 

expressed as fol1ows : 

W = / pwdA ± 2Tr[ri(N u.+M 8])+r2(N, Û2+M 02)] 
A ^ *1 ^ Pi ^ ^ *2 P2 boundary 

(A-26) 
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Substituting Eqs. A-15 through A-24 into Eqs. A-25 and A-26 and recal

ling the minimization principle given by Eq. 17 results in the follow

ing limit pressure for the inter-ring failure mode. 

( 2 . 12 Z R, 

p „ .  ' y  t L a  

1 + -gg- - 8 e + lo Pi^ + f 

in which ^ is the material yield strain and 

...wnK 

rz - Ti 
Pj = , - {A-29) 

+ r 2)/2 

_  Z i  r g Z  +  Z z  r ^ z  
Z = 2 (A-30) 

( r ^  +  r g )  
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List of Symbols 

The following symbols are used in this part: 

A = area over which the load is applied; 

= ring stiffener cross-sectional area; 

Ag = longitudinal stiffener cross-sectional area; 

c = eccentricity of the longitudinal stiffener centroid; 

C = proportionality constant; 

e = mechanism strain; 

fg.fj, = circumferential an meridional stresses, 

respectively; 

Fy = material yield strength; 

L = meridional ring spacing; 

= moment per unit length; 

Mp = section plastic moment capacity per unit length; 

= axial force per unit length; 

Pg^ = plastic collapse pressure; 

Po = limit pressure; 

r = radius; 

Rs = radius of spherical portion of torisphere; 

r-t = radius of toroidal portion of tori sphere; 

s^ = ring stiffener spacing; 

s2 = longitudinal stiffener spacing; 

t = thickness; 

u = meridional displacement; 
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Q = change in the shell meridional length; 

U = internal strain energy; 

Ue = internal elastic strain energy; 

w = displacement perpendicular to shell surface; 

W = external energy; 

Z = section plastic modulus per unit length; 

or,(% = ring and stringer stresses, respectively; 

Sg,= circumferential and meridional strains, 

respectively; 

8 = slope of the deformed shell; 

Pi,P2,P3 = constants dependent upon conical shell geometric 

parameters. 
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Table 1. Geometric parameters - theoretical plastic pressure and limit 
pressure for general failure mode models 

Model r/t «1 «2 s^/r 
Stri nger 
Spacing 
(degrees) 

Plastic 
Pressure 
PzcyfPsi) 

Limit 
Pressure 
po(psi) 

A 1200 1 0.2 0.125 6 92 90 

B 1200 1 0.125 6 87 90 

C 1200 0.2 — 0.25 6 60 57 

D 1200 0.2 — 0.25 6 61 57 

E 600 0.2 0.125 6 120 113 

F 600 1 0.125 6 178 178 

Table 2. Geometric parameters - theoretical plastic pressure and limit 
pressure for inter-ring failure mode models 

Stringer Plastic Limit 
Model r/t s^/r Spacing Pressure Pressure 

(degrees) Pzeyfpsi) po(psi) 

A 1200 1 0.1 0.25 6 69 72 

B 1200 rigid 0.1 0.25 6 73 72 

C 1200 rigid 0.1 0.375 6 57 57 

0 1200 1 0.2 0.25 6 78 80 

E 1200 1 0.0 0.25 6 62 64 

F 600 1 0.0 0.25 6 125 130 
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Table 3. Containment vessel individual failure mode resistance 

Limit Limit 
Failure^ Pressure Failure Pressure 

Mode (psi) Mode # (psi) 

1 812 16 143 

2 b 17 202 

3 273 18 176 

4 ___b 19 226 

5 268 20 186 

6 b 21 168 

7 273 22 160 

8 b 23 201 

9 264 24 177 

10 b 25 818 

26 251 26 883 

12 b 27 483 

13 147 28 209 

14 133 29 255 

15 150 30 183 

NOTE: 1 in. = 2.54 cm. ; 1 psi = 0.006895 MN/mZ. 

^Failure modes #1,3,5,..27 are general failure modes; failure 
modes #2,4,6,..28 are inter-ring failure modes; failure modes #29 and 
30, respectively, are buckling and plastic collapse modes of the 
tori spherical head. 

^Improbable failure mode; denominator is negative in Eq. 35. 
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Figure 1. Uniform static pressure failure criteria 
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Figure 2. Typical stiffened shell panel 
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Figure 3. Deformed shape - general failure mode 
(stringer not shown) 
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Figure 4. Deformed shape - inter-ring failure mode 
(stringer not shown) 
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Figure 5. Interaction diagram for plastic moment capacity 
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Figure 6. Finite element mesh - three-dimensional 
idealization 
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Figure 7. Finite element mesh - axi symmetric idealization 
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Figure 8. Pressure-displacement curve for a stiffened cylindrical 
shell panel 
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Figure 9. Pressure displacement curves for Models A, B and C, 
General Failure Mode 
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Figure 10. Pressure circumferential strain curves for Models A, B and 
C, Inter-ring Failure Mode 
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Figure 11. Displaced shape at 80 psi 
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Figure 13. Stiffened conical shell segment. Inter-ring Failure Mode 
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Figure 14. Containment vessel geometry 
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Figure 15. Maximum circumferential membrane strain versus pressure 
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Figure 16. Maximum radial displacement versus pressure 
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Figure 17. Deformed shape of the containment vessel 
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PART II. SIMPLIFIED DYNAMIC ANALYSIS FOR INTERNAL LOCALLY LOADED 

SHELLS 

Abstract 

The response of axisymmetric shells to localized impulsive load

ings that produce large deformations and material nonlinearities is 

analyzed. Simplified methods for the prediction of the strain ductil

ity of these shells are presented. The methods are developed by ideal

izing the structure as a single degree of freedom model. Large defor

mation effects are included and an elastic-perfect!y plastic material 

model is used. Several impulsive problems are analyzed using a finite 

element technique and the simplified solution. The agreement between 

the two results indicates that the simplified methods provide an accu

rate solution at a fraction of the cost of the finite element solu

tion. 

Introduction 

The calculation of the nonlinear dynamic response of shell struc

tures has received considerable attention in recent years. Most of the 

literature that has appeared on this subject has concentrated on the 

snap-through problem. The dynamic response of spherical caps subjected 

to external loads that cause plastic deformations was conducted using 

finite element methods (1,2,3,4,5). Finite difference methods (6,7) 

and finite element techniques (8,9) were used to investigate the dynam

ic buckling of cylindrical shells. The response of plates, rings, 

beams and shells under local loads, uniform high intensity impulse 
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loading and/or blast loading was also studied (10,11,12,13). Closed 

form analytical solutions for simple beams and circular rings were 

obtained by Symonds (14) and Duffey and Krieg (15), respectively. In 

addition, the response of structures in cases involving wave propaga

tion effects has been investigated (16). 

In many of the above investigations, numerical integration proce

dures in conjunction with finite element analysis were used. The prob

lem that consistently arose was the choice of a suitable time step size 

to perform the time integration. In order to insure stability of the 

numerical integration and to predict the system dynamic response, the 

time step size has to be sufficiently small (17,18). This is par

ticularly true when the structure is subjected to short duration loads 

in which a large number of high modes are excited or in cases involving 

wave propagation modes. These small time step computations are very 

expensive. An alternative is to adopt simplified methods which permit 

rapid analysis of even complex structures, with reasonable accuracy. 

The following work represents a portion of a total program whose 

objective is to assess the uncertainty of the containment vessel resis

tance. One part was devoted to developing simplified methods to ana

lyze stiffened axisymmetric shells under uniform internal static pres

sure. The present part, discussed herein, concentrates on the dynamic 

analysis of unstiffened axi symmetric structures subjected to internal 

localized dynamic loads. Simplified approaches for the prediction of 

the maximum deformation of cylindrical and spherical shells under high 

intensity localized loading are proposed. These methods are based upon 
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idealizing the structure and the applied loads to simulate an elastic-

plastic single degree of freedom model. Additionally, the methods take 

into account large deformations effects. The one degree of freedom 

system is traditionally expedient for obtaining the response of struc

tures in the plastic range (19). Finite element analyses are used to 

guide the formulation and to calibrate the simplified methods. 

Simplified Dynamic Analysis of Axisymmetric Shells 

General 

The problem of evaluating the resistance of axisymmetric shells 

under localized dynamic load is an important one, for example, contain

ment vessels for nuclear power plants. Localized dynamic loads could 

possibly be generated within the containment shell by hydrogen explo

sions. A hydrogen detonation within the confines of the containment 

generates a shock wave which propagates through the air inside the 

containment. When this shock wave intersects the containment walls, a 

reflected pressure is generated which delivers dynamic pressures to the 

shell. Such a type of loading can be idealized as a pure impulse. 

This is very close to true if the pulse length of the dynamic pressure 

is less than one-fifth the predominant structural period (19). In the 

following discussion, simplified methods for the evaluation of the 

maximum deformation of an impulsively loaded cylindrical and spherical 

shells are presented. These methods are based upon using the Rayleigh-

Ritz approach with an assumed displaced shape (19,20). Finite element 

analyses will be employed to guide the formulation. 
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Simplified dynamic analysis of cylindrical shells 

For an axisymmetric structure with nonsymmetric applied loads (see 

Fig. 1), the membrane strain displacement relationships which include 

large rotation effects are (21): 

'i> 

(2 )  

dv . du , dw dw 
dx "ajc "2^ (3) 

in which sg and are the meridional, circumferential and shear 

strain, respectively. The displacements w, u and v, , are the radial, 

meridional and circumferential displacements, respectively, x and y 

are the cylinder meridional and circumferential coordinates, respec

tively, while r denotes the shell midsurface radius. 

Figure 1 illustrates a deformed shape for a smooth cylindrical 

shell subjected to a localized load. The dynamic load is idealized as 

an impulsive pressure applied over a circular area, with a radius Sg. 

The displaced shape is assumed to vary as an elliptic paraboloid with 

major and minor radii of a and b, respectively (see Fig. 1). This 

shape is close to actual when the deformations of the shell are signif

icantly into the plastic stage. This assumption will be approximately 
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verified later in this study. For the above assumed shape, the radial 

displacement w is written as; 

2 2 

w = w (1 - (4) 
° a b 

in which Wg represents the maximum displacement normal to the shell 

surface at the ellipse centroid. The associated circumferential and 

meridional membrane strains are also assumed to vary with the same 

shape and are written as: 

2 2 

Eg = Eg (1 - (5) 
0 a b 

G*= G* (1 -
* *0 a b 

( 6 )  

where £9^ and are the maximum strains at the centroid of the de

formed area (see Fig. 1). In this study, the strain energy associated 

with the shear strain is neglected compared to the strain energy due to 

the circumferential and meridional strains. 

As previously mentioned, the dynamic analysis will be accomplished 

using an equivalent, elastic-plastic single degree of freedom system. 

In order to define an equivalent one degree of freedom model, it is 
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necessary to evaluate the parameters of such a system, namely, the 

equivalent mass m*, stiffness k*, maximum spring force Rjjj, and the 

equivalent force F*. With this representation of the actual struc

ture, the dynamic analysis becomes relatively simple. By equating the 

kinetic and potential energy of the actual and equivalent model in 

conjunction with the assumed shape given in Eq. 4, one obtains, for 

example, the equivalent force, F*, which is expressed as (19): 

F* = ^ p w dA (7) 

0 

when Aq is the area over which the pressure p is applied. Integra

tion of Eq. 7 yields: 

2 

F = n s P [l r (— + —) ] (8) 
° 4 aZ b2 

In the case of an applied impulse, i, per unit area, the equivalent 

impulse I* for the idealized single degree of freedom model can be 

written as: 

• I = 
-0^ (9) 
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In a similar way, the equivalent mass, m*, is calculated using the 

following relation (19): 

2 2 2 

m = / m(l - —— ) dA (10) 
A a^ 
d 

in which Ay represents the area of the assumed deformed shape on 

which the equivalent system is based. Integration of Eq. 10 results 

in: 

m* = (11) 

where m is the mass of the shell skin per unit area. By impulse momen

tum principles, the initial velocity, Wq, of the equivalent 

system can also be written as: 

• 

Initially, when an explosion occurs inside a containment, an im

pulse is delivered to the undisturbed vessel walls. In other words, 

the energy is all in the form of kinetic energy, T, and can be ex

pressed for the equivalent single degree of freedom model as: 
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T - m #0 (13) 

Substituting Eqs. 9 and 11 into the above relationship yields: 

4 2 2 
Sir S_ i S. , . 

= - T i r T i - ( 1 4 )  

At the maximum displacement, i.e., zero velocity, the kinetic 

energy has been changed to strain energy. This energy is given as: 

U = I (f .E. + f  E )  d V (15) 
y 9 9 9 9 

in which fe and f^, are the circumferential and meridional membrane 

stresses, respectively. In Eq. 15, bending energy is neglected since, 

for large displacements, the behavior is principally membrane, as the 

finite element analyses demonstrate. The von Mises yield criterion 

(22) is employed in this investigation to relate the membrane stresses 

to the material yield strength, Fy, as: 

2 2 2 
f« + f. - f.f. = F.. (16) 

The plastic strains £9 and for a rigid-perfectly plastic mater

ial, according to the deformation strain theory of plasticity (22), are 

as follows: 
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=8 = c ( fe -  i  f*) (17) 

s* = C ( f *  -  7 fe)  (18) 

in which C denotes a proportionality constant. The maximum membrane 

strains, £QQ and e^, are also assumed to be related to each other as: 

° ^ (19) 

Introducing Eq. 19 into Eqs. 17 and 18 yields the following relation

ship between the membrane stresses fe and f^ 

f* = fe (2°) 

Substituting the above relationships into Eq. 15 results in the follow

ing strain energy accumulation for a rigid-perfectly plastic material: 

U = 
. b t Fy e 1 /2  

(a + b + ab) (21) 

in which t is the thickness of the shell wall. 
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The strain energy given in Eq. 21 can be modified to approximate 

the case of an elastic-perfectly plastic material. Since the stress-

strain relationship is linear in the elastic region, the strain energy, 

Ug, which is accumulated up to the yield strain, sy, can be 

approximated as: 

in which U is the energy associated with rigid-perfectly plastic behav

ior. Subtracting this complementary elastic energy from the energy 

given by Eq. 21, the internal energy for an elastic-perfectly plastic 

material can be approximated as: 

(22) 

(23) 

Eq. 23 can be written in terms of a strain ductility, X, as: 

(24) 

where 
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X = (25) 

During the ctynamic response of the shell, the initial kinetic energy 

(Eq. 14) is converted into internal strain energy as the single degree 

of freedom system reaches a maximum displacement (zero velocity). 

Equating Eqs. 14 and 24, one obtains: 

2 2m t F e -
i = ^ (X - y) (26) 

ziT ^ 

where 

2 2 2 
^ ^ ^ {A ,+ G ,+ (27) 

in which 

A = |- (28) 
0 

B =|- (29) 
0 

To this point, the constants a and b, which define the assumed dis-
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placed shape have not been identified, i.e., the extent of the deforma

tion has not been selected. These parameters will be selected to mini

mize the collapse load (impulse) (23): 

T%- °  '  IT"  °  (30) 

This analytical procedure results in coupled equations from which the 

unknown parameters A and B can be calculated. For an impulsively load

ed cylindrical shell, the parameters A and B are found to satisfy Eq. 

30 when both are unity: 

A = B = 1 (31) 

or 

a — b — Sq (32) 

In other words, the boundary of the assumed deformed shape coincides 

with the boundary of the applied load. This will be verified by finite 

element analysis in the following sections. Substituting the relation

ship given in Eq. 31 into Eq. 26 produces: 
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in which A can be interpreted as the ductility demand associated with 

the impulsive pressure i. In summary, Eqs. 25 and 33 represent the 

approximate dynamic solution of the problem shown in Fig. 1 with a 

prescribed impulsive load. 

Simplified dynamic analysis of spherical shells 

The preceding method can be specialized to analyze locally loaded 

spherical shell structures. In this case, the impulse delivered to the 

shell walls produces symmetric deformations in the shell skin. This is 

an axisymmetric problem, and, hence, the assumed shapes in Eqs. 4, 5 

and 6 become: 

2 

w = w ri - A ] (34) 
0 a 

- Y ] (35) 

= % (36) 

Following the procedure outlined in the foregoing section yields: 

2 -,2 
(37) 

A2 
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Applying the minimization procedure given by Eq. 30 results in the 

following relationships for a localized loaded spherical shell: 

As can be seen, Eq. 39 is identical to Eq. 33. The strain ductil

ity in a cylindrical or spherical shell due to short duration impulse 

loading is independent of the shell radius r. In other words, one can 

conclude that there is no difference in the strain ductility demand of 

a cylindrical or spherical shell having the same wall thickness, t, and 

subjected to the same impulse, i. Additionally, the strain ductility 

of a circular plate could be predicted using the above relations since 

Eqs. 33 and 39 demonstrate that the strain ductility is independent of 

the shell radius of curvature. This finding will be approximately 

verified by finite element analyses in the following sections. 

Several assumptions were involved in the formulation and the de

velopment of the simplified methods. Verification and calibration of 

these approaches will be conducted by comparing the results with finite 

element results. The ANSYS (24) finite element computer code was used 

in this work to perform the transient nonlinear dynamic analysis of 

(38) 

2 

(39) 

Calibration of the Simplified Methods 
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locally loaded shells. 

Finite element guidelines 

The ANSYS program is a large-scale, general-purpose finite element 

program for the solution of several classes of engineering analysis 

problems. Geometric nonlinearity can be included by either one or both 

of two possible options in the program. The first option is called 

stress stiffening and is accomplished by adding the geometric stiffness 

matrix (25) to the usual linear element stiffness matrix. The second, 

referred to as large displacement analysis, is accomplished by updating 

nodal coordinates to formulate the element stiffness matrix (25). 

Reference 26 recommends using both the stress stiffening and large 

displacement options for flexible structures with low bending stiff

ness. The ANSYS program also provides several options which can be 

used to solve for material nonlinearity effects. An elastic-perfectly 

plastic material property is employed in this work. 

In performing the nonlinear transient dynamic solution of impul

sively loaded shells, it is expedient to start with the simple case, 

i.e., a spherical shell. A uniform impulse is applied to the sphere 

over a local area as shown in Fig. 2. In this work, the angle, gg 

(see Fig. 2), of the loaded area is taken a 3.3 degrees. In addition, 

only a portion of the sphere is used for the finite element analysis, 

since the influence of the displacement boundary conditions does not 

propagate out beyond an angle of five times^t/r (27). The author 

recognizes that this may not be true if the impulsively loaded 
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structure behaves el astical ly (because of wave propagation and reflec

tion effects). However, the deformed shape becomes very localized when 

the structural behavior is predominantly nonlinear. This approximation 

will be verified later. 

As part of the study presented herein, the following effects on 

the finite element dynamic results were investigated. First of all, 

the effect of the finite element model, in particular, the arc length 

used to model the spherical shell, was studied. Second, the influence 

of the impulse shape was examined. Also, the effect of the integration 

time step size was investigated. These studies were conducted using a 

spherical shell with a radius of 1000 in. (25.4 m), an r/t ratio of 

2400, and a material yield strength of 50 ksi (344.5 MN/m4. The 

sphere was subjected to an initial impulse equivalent to an initial 

velocity condition of 2000 in/sec (50.8 m/sec) within the localized 

angle (see Fig. 2). A portion of the sphere with an angle, 

(see Fig. 2), of fifteen degrees was used for the finite element model. 

This was idealized for the finite element analysis by a number of 

three-dimensional triangular shell elements. The element has both 

bending and membrane capabilities and six degrees of freedom at each 

node. (This element is referred to as STIF 48 in the ANSYS element 

library.) The element length was restricted to^Jrt/2 within and near 

the loaded area but was gradually increased toward the outer edge; 

however, the element aspect ratio was kept less than two. A five-

degree wedge of the spherical cap was analyzed because of the circular 

symmetry (see Fig. 2). The conditions of symmetry were imposed at 
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each of the boundaries. Complete details of the above studies are 

given in the Appendix. 

The study verified that a spherical cap with an angle of 

fifteen degrees is adequate for the finite element idealization of the 

spherical shell since the results did not differ significantly when a 

30 degree cap was analyzed. A uniformly distributed pure impulse was 

found to approximate adequately the pressure-time loading. Finally, 

the procedure suggested in Ref. (16) will be adopted to account for the 

effects of the time step size on the numerical integration results. In 

this procedure, the problem is solved a number of times with different 

time step sizes and the "best" answer selected (16). In the current 

work, each problem is analyzed at least twice and the results are lin

early extrapolated to a zero time step size. The author recognizes 

that this approach may underestimate the final strain results. 

Analysis of spherical shells 

As a part of the calibration of the simplified methods presented, 

the following spherical shells were analyzed. Two spheres with a rad

ius of 1000 i 

(Sphere II), 

i1. (25.4 m) and an r/t ratio of 2400 (Sphere I) and 1200 

respectively, were considered. A uniform pure impulse 

(initial velocity) was applied within an area with angle of 3.3 

degrees. Sphere I was analyzed with initial velocities of 2000 in/sec 

(50.8 m/sec) and 1000 in/sec (25.4 m/sec). The solution of Sphere II 

was conducted using an initial velocity of 2000 in/sec (50.8 in/sec). 

The analysis of both problems was carried out until the first zero 
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velocity peak of the structure response (maximum circumferential mem

brane strain) was reached. 

Some of the finite element results for Sphere II with a time step 

size of 50 usee are summarized in Figs. 3, 4, 5, 6, 7 and 8. Figures 3 

and 4 illustrate the circumferential membrane strain and the crown 

radial displacement, respectively, as functions of time. Figure 5 

shows "Wie normalized circumferential membrane strains (strain/maximum 

strain). The normalized radial displacements (nodal displacement/crown 

radial displacement) versus the arc length measured from the crown are 

shown in Fig. 6. The assumed parabolic deformed shape given by Eq. 34 

is also illustrated. Notice that the effect of the localized distur

bance does not propagate out beyond an angle of three to five times 

Vt/r and certainly not out to fifteen degrees. 

Figures 7 and 8 illustrate the maximum circumferential membrane 

strain and the maximum crown displacement, respectively, as the time 

step size is reduced for the Sphere I and II solutions. The smaller 

t$me step yields higher displacements and strains. As previously 

mentioned, a good approximation to the solution is predicted by extrap

olating these results to zero time step size. These approximate values 

of the final strain and displacement are given in Table 1. The strain 

ductilities predicted by the finite element analysis and those calcu

lated using Eq. 39 are also listed. In addition, for the reader's 

interest, the total computer time (VAX 11/780) used for each solution 

is tabulated. 

The results listed in Table 1 demonstrate that the simplified 
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analysis predicts a larger strain ductility demand than the finite 

element method. The finite element analysis would predict higher val

ues if smaller time step sizes were used in extrapolating the results 

to approximately zero. For example, extrapolating the results of the 

50 and 25 usee time step solutions predicts a ten percent higher strain 

ductility than the extrapolated 100 and 50 ysec solutions. 

Analysis of cylindrical shells 

As a continuation of the simplified methods calibration, a locally 

loaded finite length cylinder was analyzed. The cylinder has a radius 

of 1000 in. (25.4 m) and an r/t ratio of 1200. A pure uniform impulse 

that provides an initial velocity of 2000 in/sec (50.8 m/sec) over a 

localized area with an angle of 3.3 degrees was considered. 

The cylindrical shell was modeled for the finite element analysis 

using a portion of the cylinder with a one-half central angle of 15 

degrees and a length equal to one-half the radius. Once again, the 

idealization is based upon the finite element guidelines which were 

discussed previously. The finite element model is shown in Fig. 9. 

The conditions of symmetry were imposed at each of the boundaries 1-2 

and 1-4. The circumferential displacements along the boundary 2-3 were 

constrained to have the same meridional translation. 

The finite element analysis was conducted using time increments of 

100 psec and 50 ysec and the solution was carried out until the first 

zero velocity peak of the structural response was reached. The extrap

olation procedure discussed previously was used to predict the maximum 
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circumferential membrane strain and outward displacement. These 

results are summarized in Table 1. The normalized radial displacements 

of the nodes along boundary 1-2 (nodal point displacement/maximum dis

placement) are plotted in Fig. 6. The normalized circumferential 

membrane strains of the elements along the boundary 1-2 are superim

posed on Fig. 5. Figure 10 illustrates the deformed shape of the loc

ally loaded cylindrical shell. Notice that the radial displacements 

decay rapidly toward the boundary of the loaded area. Also, notice 

that the boundary of the deformed shape forms a circle which coincides 

closely with the loaded area boundary. These findings confirm the 

assumptions stated early in this work. 

Analysis of circular plates 

In order to extend the applicability of the simplified methods 

discussed previously, a nonlinear dynamic analysis of a circular plate 

was performed. The plate had a radius of 260 in. (6.60 m) and a 0.8333 

in. (2.117 cm.) thickness. These dimensions were employed to resemble 

the spherical cap analyzed previously (Sphere II). The plate was sub

jected to pure uniform impulse which amounts to an initial velocity of 

2000 in/sec. (50.8 m/sec.) over a circular area of a radius equal to 

57.5 in. (1.461 m). This is equivalent to the loaded area used in the 

spherical and cylindrical shell study. The finite element solution was 

conducted using time step sizes of 100, 50 and 25 psec. up to the first 

strain peak reached. A summary of the finite element results is shown 

in Figs. 3, 4, 5 and 6 where they are superimposed on the corresponding 



www.manaraa.com

78 

results for the cylinder and sphere analysis. The maximum normal de

flection and maximum strain were predicted using the extrapolation 

procedure mentioned before and are given in Table 1. The strain duc

tility predicted using Eq. 39 is also shown. 

General discussion 

The analyses described in the previous sections were performed in 

order to verify the proposed simplified methods. Table 1 summarizes 

the finite element analysis of the different structures analyzed. As 

can be seen, the finite element analysis results in a smaller strain 

ductility than the simplified methods. However, larger finite element 

results would be predicted if very small time step sizes were employed 

in the analysis. Additionally, a larger value of the maximum strain 

could possibly be reached at some later response peak since the finite 

element solutions presented were carried out only to the first peak. 

While this is possible, it would be very expensive in terms of computer 

time (see the listed computer time in Table 1). On the other hand, one 

can see the advantages of using the simplified methods presented in 

this work. This approach predicts higher strain ductilities, which are 

probably closer to the correct answer. 

The finite element results for the sphere, cylinder and plate are 

interestingly similar. Each structure behaves differently in the early 

stage, i.e., in the elastic region, as would be predicted by linear 

shell theory. When the deformations become large; however, (see Fig. 
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6) the strains are found to have little variation through the thick

ness, i.e., the bending strains are insignificant and the membrane 

effects predominate. Additionally, even though the sphere, cylinder 

and plate initially have dissimilar radii of curvature, these differ

ences are insignificant when compared to the highly localized curvature 

and shape associated with the large displacement. The simplified re

sult of Eqs. 33 and 39 also predict this when one notices that the 

ductility is independent of the radius of curvature in both the cylin

drical and spherical solutions. Figures 5 and 6 illustrate the simi

larities in the strains and displacements for the sphere, cylinder and 

plates as well as a comparison with the assumed functions. 

Conclusions 

The nonlinear transient dynamic of an impulsively loaded shell is, 

in general, expensive. Alternative approaches referred to as simpli

fied methods are developed. These methods are based upon idealizing 

the structure as an elastic-plastic single degree of freedom model with 

large deformation effects. Finite element techniques were used to 

guide and calibrate the formulation of these methods. Three different 

shells were analyzed using the finite element technique and simplified 

approach. The simplified methods are sufficiently accurate to define 

the strain ductility of an impulsively loaded cylindrical shell, spher

ical shell and circular plates. These methods demonstrate that the 
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ductility is independent of the radius of curvature which is confirmed 

by the finite element analysis. The methods represent a powerful tool 

for practical applications. On the other hand, the finite element 

provides an accurate solution only at large expense — small time 

steps. 

Appendix. Finite Element Modeling Guidelines 

The objective of the study summarized in the Appendix is to 

investigate the influence of the following parameters on the finite 

element dynamic analysis: 

1. Finite element model. 

2. Impulse shape. 

3. Time step size. 

To study these three different effects, a nonlinear transient 

analysis of the spherical shell shown in Fig. 2 was performed. The 

shell radius and thickness are 1000 in. (25.4 m) and 0.417 in. (1.06 

cm.), respectively. A pure impulse per unit area of 0.617 psi-sec. was 

applied to the shell crown as shown in Fig. 2. This impulse was taken 

to be uniformly distributed over a localized circular area with an 

angle, g^, of 3.3 degrees (see Fig. 2). Such an impulse amounts to a 

specified initial velocity condition of 2000 in/sec. (50.8 m/sec.). 

The material yield strength and Young's modulus were taken a 50 ksi 

(345 MN/m4 and 30,000 ksi (207,000 MN/m^), respectively. 
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The finite element solution was conducted using the ANSYS finite 

element computer program. The analysis was accomplished taking into 

account geometric and material nonlinearity effects. The large 

displacement and stress stiffening options available in the program 

were employed. An elastic-perfectly plastic material was used. 

To investigate the effect of the finite element, a solution of the 

problem shown in Fig. 2 was conducted twice. A spherical cap with an 

angle, of 15 and 30 degrees, was analyzed. Because of axial 

symmetry, a wedge with five degrees polar angle was employed in this 

work (see Fig. 2). The finite element model consisted of a number of 

triangular shell elements (STIF 48 in the ANSYS element library) with 

material and geometric nonlinear capability. The element size was 

restricted toVrt/2 within the loaded area while this was gradually 

increased toward the outer edge The element aspect ratio was kept less 

than two. Twenty-five and 39 elements were used for the 15 and 30 

degree spherical cap, respectively. The conditions of symmetry were 

imposed at each boundary. Meridional displacements at the outer edge 

were restrained against tangential motion. A constant time step of 

100 ysec was used to perform the numerical intergration and the solu

tion was carried out until the first zero velocity peak of the struc

tural response (maximum circumferential membrane strain) was reached. 

The solution of the 30 degrees spherical cap provided a slight increase 

in the normal displacement at the crown, while the circumferential 

membrane strain was decreased by about five percent. Figure 11 illus-
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trates the profiles of the normal displacement for the different finite 

element models. Since these differences are insignificant, the use of 

an angle, of 15 degrees is adequate. In other words, one can 

model a spherical shell for the nonlinear finite element analysis using 

only an arc with an angle of five-^t/r beyond the zone of the influence 

of the boundaries, i.e., beyond the loaded area. 

Another study was conducted to investigate the effect of the pulse 

shape on the results. The spherical cap with the fifteen degrees angle 

and with the geometric and material parameters mentioned above was 

analyzed again with an applied pressure versus time input and a zero 

initial conditions. A triangular load-time history with a maximum peak 

pressure of 2470 psi (17.04 MN/m^)(see Fig. 12) and a duration time of 

500 ysec was used. This pressure-time pulse results in the same im

pulse used in the previous pure impulse solution. For the triangular 

pressure-time pulse solution, a time step size of 12.5 psec was used 

during the pulse rise time. During the pulse decay time, the time step 

increments were increased to 25 and then to 50 psec. This was done; 

(1) to characterize the input pressure-time relation, and (2) to keep 

the ratio of any consecutive step sizes within a value of two which is 

recommended in (26). The time step was then increased to 100 usee (the 

same as the pure impulse case) after the pulse stopped. The results 

were found to agree with the pure impulse solution. The pressure-time 

solution results in a decrease of nine and three percent in the maximum 

circumferential strain and crown displacement, respectively. Figure 11 
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illustrates the deformed shape of the spherical shell. Notice the 

similarity in the deflected shape for the pressure-time and the pure 

impulse solution. In this study, the pure impulse loading will be 

employed. 

Numerical integration (step-by-step) techniques are used to solve 

the structural dynamic equilibrium equation. The selection of the time 

step. At, has an important effect on the finite element results. In 

order to predict the system dynamic response accurately and to insure 

stability of the numerical integration. At has to be sufficiently 

small. This is particularly important if the structure is subjected to 

short duration loads where a large number of modes are excited or in 

cases involving wave propagation effects, such as the present problem. 

A Houblet integration scheme (26,28) is employed in the ANSYS 

program to handle the numerical integration problem. Reference 24 pre

sents a relationship between the time step size and the numerical error 

in the amplitude of response, expressed in terms of energy loss. For 

example, a 30 point per cycle integration scheme results in a numerical 

damping of approximately one percent. Numerical damping refers to the 

decay in vibration amplitude caused by the use of time steps which are 

large relative to the period. In wave propagation problems such as 

this in which reflection and refraction occur, a suggested value of At 

(29,30) is given as: 

At <4 (A-1) 
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Despite the fact that Eq. A-1 yields a small time step size, Ref. (24) 

recommends using 

where ^ is the smallest length of the element and c is the speed of 

wave propagation and is given as: 

in which p is the mass density. Even though Eq. A-1 results in a very 

small time interval, Ref. 16 recommends solving this type of problem 

several times using different time step sizes and selecting the "best 

answer". Also, Refs. 16 and 31 suggest changing the time interval 

during the solution until acceptable results are reached. The latter 

option is not automatically available in the ANSYS computer program. 

The spherical cap considered above (r = 1000 in., r/t = 2400) 

subjected to pure impulse (vq = 2000 in/sec.) was analyzed using 

different values of the time step size At. The solution was performed 

using At of 100, 50 and 25 psec, respectively. Equations A-1 and A-2 

yield a maximum value of At of 50 and 16 psec., respectively. 

The results of the maximum membrane circumferential strain and 

crown normal displacement are given in Table 1. The larger time step 

(A-2) 

(A-3) 
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results in smaller displacements and membrane strain. The contribution 

of the higher modes is numerically filtered out (numerical damping) 

since the time step is large relative to the period of the higher modes 

(24). In this problem, the higher modes correspond to the in-plane 

wave propagation modes. Figure 13 illustrates the effects of the de

creasing time step size on the variation of the circumferential mem

brane strain. 

Profiles of the normalized tangential displacements are shown in 

Fig. 14. Each solution is normalized with respect to its maximum 

value. Figure 14 illustrates the differences in the tangential dis

placements for the three different time increments—especially near the 

crown. This is caused by the contribution of the higher membrane 

modes. Such modes are filtered out with the larger time step. These 

differences in the tangential displacement and its gradient introduce 

differences in the predicted strain (see the strain displacement rela

tionships in Eq. 1). 

To predict accurate results, one should use a smaller and smaller 

time step size until a converged solution is obtained. This would be 

extremely expensive in terms of computer time. An alternative is to 

use the procedure suggested in Ref. 16. Such an approach is adopted 

herein. The problem will be solved at least twice using different time 

step sizes and the results extrapolated to a time step size of zero 

(16).  
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List of Symbols 

The following symbols are used in this part: 

a,b = major and minor ellipse radii, respectively; 

A,B = nondimensional quantities; 

Aq = area over which the load is applied; 

Aj = area of the deformed shape; 

c = speed of wave propagation; 

C = proportionality constants; 

E = Young's modulus; 

fe,f^ = circumferential and meridional membrane stresses, 

respectively; 

Fy = material yield strength; 

F* = equivalent force; 

i = impulse per unit area; 

I* = equivalent impulse; 

K* = equivalent spring stiffness; 

m = shell skin mass per unit area; 

M* = equivalent mass; 

r = shell radius; 

So = radius of the loaded area; 

t = thickness; 

T = kinetic energy; 

u = meridional displacement; 

Ug = internal elastic energy; 
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U = Internal strain energy; 

V = circumferential displacements; 

w = displacement perpendicular to the shell surface; 

Wq = maximum radial displacement; 

eg.s* = circumferential and meridional strains, respectively; 

£00,6^ = maximum circumferential and meridional strains, 

respectively; 

£y = material yield strain; 

Ye^ = shear strain; 

Bq = half of the central angle of the loaded area; 

= half the central angle of the shell used; 

X = strain ductility factor; 

* = nondimensional value; 

p = mass density; 

At = integration time step size. 
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Table 1. Summary of the finite element and approximate results 

Vo At ea eb SP 5b xe cpu 
Structure in./sec ysec. max At=0 max At=0 

LU L
a. 

time 
in./in. in./in. in. in. hr. 

sphere 100 .0120 8.7 1.3 
.018 9.9 10.8 

R/t=2400 2000 50 .0150 9.3 13.8 2.4 
.019 10.1 11.4 

25 .0170 9.7 5.5 

sphere 100 .0040 4.2 1.3 
1000 .0054 4.6 3.25 3.8 

R/t=2400 50 .0047 4.4 2.4 

sphere 100 .0110 8.7 1.3 
2000 .0164 9.9 10 13.8 

R/t=1200 50 .0154 9.3 2.4 

cylinder 100 .0125 10.2 5.8 cylinder 
2000 .0183 11.4 11 13.8 

R/t=1200 50 .0154 10.8 11.0 

100 .0097 11.8 1.3 
plate .0145 13.2 8.7 

2000 50 .0121 12.5 13.8 2.4 
t=.833" .0161 14.5 9.7 

25 .0141 13 5.5 

^Maximum circumferential membrane strain. 

^Extrapolated answers. 

''Crown radial displacement. 

^Finite element results: X p.E." — 

^Ductility factor calculated using Equation 39. 
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the cylindrical shell problem 
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Figure 10. Deformed shape of the cylindrical shell problem 
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PART III. RELIABILITY ASSESSMENT OF CONTAINMENT RESISTANCE 

Abstract 

The purpose of the containment vessel in a nuclear power plant is to 

prevent the release to the atmosphere of any radioactivity which may 

accidentally be present within the vessel. In spite of the extreme 

precautions that are considered in the design and construction proce

dures, leakage of radioactivity still does have a small probability of 

occurrence. To study the probability of such an event, a best estimate 

and uncertainty assessment of the containment resistance is needed. In 

this paper three reliability assessments: an advanced second moment 

method, a Monte Carlo simulation technique and a simplified approach 

for practical analysis, are proposed. Criteria for the prediction of 

the theoretical resistance of stiffened cylindrical shells and ellip-

soidial heads under uniform internal static pressure are presented. 

The statistical characterization of the containment resistance is per

formed using these criteria in conjunction with the three reliability 

assessment techniques. A numerical example is presented to illustrate 

the differences among the reliability approaches. 

Introduction 

Criteria for structural design have generally been based on the 

traditional safety factor concept. These criteria may differ in the 

levels of safety they provide because of the difference in the design 

philosophy and the assumptions involved. Even with the presence of a 

safety factor, there is a small probability that an adverse event, or 
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failure, can occur because of the uncertainties arising from randomness 

in design variables such as geometric parameters, material strength and 

applied loads. Uncertainties in the mathematical model used in the 

prediction of the structure resistance should also be considered. 

Therefore, the problem of structural design must be resolved in light 

of a best estimate and uncertainty assessment. Such conclusions have 

led to the application of probabilistic methods to structural design 

(1,2,3,4,5). 

This paper is part of a study the objective of which is to assess 

the uncertainty of the containment vessel resistance for some nuclear 

power plants. It summarizes some reliability techniques and demon

strates the use of such techniques to assess the uncertainty in the 

prediction of the containment vessel resistance. 

Evaluation of Reliability Analysis 

The conceptual framework of reliability is provided by classical 

reliability tiieory as described in (1,3). The reliability of a struc

ture may be calculated in terms of the probability density functions of 

the random resistance and load variables. In principle, there are 

three different levels of sophistication for the reliability-based 

design approach. The Level 1 method is defined as design and safety 

checking aspects whose reliability is provided by introducing a set of 

partial safety factors applied to the nominal values of the basic de

sign variables. These factors are statistical parameters that are 

deduced from probabilistic considerations to arrive at an appropriate 
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level of structural reliability. The second level, referred to as the 

Level 2 method, employs safety checks at a selected number of points 

(often one point only) of the safety domain boundaries. Probability 

density functions for the design random variables are not required for 

Level 2 analysis. Performance of Level 2 reliability analysis neces

sitates the first two moments, i.e., the mean and standard deviation, 

of each variable. The reliability is measured by what is called a 

safety index, g. (In some studies, g is known as a reliability index.) 

Level 3 is the most complete reliability technique. All joint proba

bility distributions of all design variables involved must be known; 

and the necessary integration, usually multidimensional, of the joint 

probability density functions of the variables must be computed. These 

operations are certainly not easy to perform; however. Level 3 is the 

only available means to check the validity of Level 2 and Level 1 

analyses. 

Reliability Analysis 

As previously stated, the probability of failure may be computed 

using the probability density functions of the random resistance and 

load variables. In general, these variables are also functions of many 

other variables, and in real problems, the information available is not 

explicitly given. The work presented herein is devoted to finding the 

probabilistic characteristics of the structural resistance variable R. 

Let R be a function of the independent variables X,, i.e.. 
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R = R(X^,X2,...Xn), then by definition, the cumulative distribution 

Fr(.) for a selected value, r, can be written as: 

Fpfr) = P(R < r) = P (R(X^,X2...Xn) < r) (1) 

or 

Fj^(r) / fx(x^,x2.-.xn)dx^...dxn (2) 

in which is the probability density function of the 

independent variables X^ and x-j represents a specific value of 

X-j. The evaluation of the integral in Eq. (2) is difficult and im

practical except for simple functions with not more than three vari

ables (6). However, simulation techniques (7) can be used to perform 

such an evaluation. These difficulties have motivated the development 

of Level 2 reliability analysis. In this paper, second moment methods 

and Monte Carlo simulation technique are employed to conduct Levels 2 

and 3, reliability assessments of the containment vessel resistance. 

Second moment method (Level 2) 

In this approach, the uncertainty of the random variables X, is 

characterized by their first two moments of the perhaps unknown proba

bility density functions. The fundamental operational procedures were 

introduced by Cornell (8) and their philosophical bases are presented 

in (9,10). This reliability concept is referred to as the mean first 

order second moment method (MFOSM) and is summarized as follows: 
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Let R = RfX^.Xg.'.Xn) be the structural resistance, which is a 

function of the random variables X-j. This function has to be linear

ized at some points for the purpose of performing the reliability anal

ysis. In the MFOSM method, these points were selected to be the mean 

values, Xi, of the random variable X^. Therefore, linearization of 

this function using Taylor series and neglecting the nonlinear terms 

yields 

R = R(x , X ... x_) + I (X - X ) il 

Xi - X. 

(3) 

When the random variables X^ are independent, i.e., the correlation 

coefficients are zeros, the mean and variance of R become 

R = R(x , X ... x_) (4) 
12 " 

" X, . X, 

2 
®X 
i 

(5) 

Assuming a normal distribution for R, the safety index, g, is 

6 = (61 

Despite its simplicity and practical advantages, there is some 

criticism about the mean first order second moment method. The 
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criticism is against the linearization of the limit state function (R-

r, in this case) at the mean value, which may result in significant 

errors. Also, the MFOSM method fails to be invariant for different 

equivalent mathematical formulations of the same problem (10,11). 

Because of these drawbacks, other forms of the second moment theory 

have been developed (12,13). 

Several investigators (10,12,13) have shown that a better lineari

zation is obtained at what is called the design point. Linearization 

of the limit state at such a point insures the invariance of the sta

tistical characteristics of the function under any mathematical formu

lation. This approach is known as invariant or advanced second moment 

method. The general formulation of this concept consists of two steps: 

(1) transforming the random variables, X-,-, into a space of uncprre-

lated normalized variables, u^, in which 

"i 
Xi -

^i 

(7) 

(2) measuring the shortest distance between the origin of the trans

formed space to the failure surface. The point (u^ Ug^... u^) 

on this surface which corresponds to the shortest distance is called 

the design point, and the minimization problem can be stated as; 
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with constraint. 

R(u^,u2...un)-r=0 (9) 

or, in the basic variable X-{, where the design point is identified as 

• #Xp / , 

6 = rnin. (10) 

with constraint, 

R(X^,X2...Xn)-r=0 (11) 

The cumulative distribution of R, denoted by F%(.) can be approxi

mated as: 

Fj^(.) — P(R<r) — $(-g) (12) 

in which $(.) is the cumulative distribution of the standard normal 

distribution. 

Equation 12 yields the exact cumulative distribution when the 

boundary of the transformed failure region is linear and R is normally 
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distributed. However, when the boundary surface of the transformed 

failure region is nonlinear, it is not correct to assume that the cum

ulative distribution is exact. For example, if the boundary surface of 

Rtu^.ug, , UP)-r=o, in the transformed space, is concave toward 

the origin, Eq. 12 underestimates F%(r), whereas, if the boundary 

surface is concave away from the origin of the transformed space, Eq. 

12 overestimates the cumulative distribution. In real structure prob

lems, at least some of the variables are non-normal; for example, 

material yield strength is described as lognormally distributed (11), 

and relatively small live loads seem to have a Ganrna distribution (10). 

However, these non-normal distribution types can be transformed into 

equivalent normal variables by the methods outlined in (6,10,13). This 

transformation is accomplished by using a Taylor Series expansion of 

the non-normal distribution about the design point x*. 

= x* - (jtF. (x*)] (13) 

M [F^. (x-)] } 
Oi - 114) 

where x^, are the mean and standard deviation of the equivalent nor

mal distribution, and f-;(.) and Ft(.) denote the probability density 

and the cumulative distribution of X-j, and *(.) is the density function 

for the standard normal variate. 
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Monte Carlo simulation technique (Level 3) 

As noted before. Level 3 analysis requires performing multidimen

sional integration of the probability density functions of the random 

variable, X-j. In the presence of such a difficult integration, the 

only practical approach is the direct simulation of the random process. 

The simulation approach consists of drawing samples of the independent 

input variables according to their probability distribution and then 

feeding them into the mathematical model to estimate the statistical 

characteristics of the dependent function. 

An approximation to the cumulative distribution can be obtained 

using the Monte Carlo simulation technique in conjunction with the 

Order Statistic Concept (14). Since R is a function of the other ran

dom variables, , one can generate, by means of random number gener

ation, random values of X-j, which are then substituted into the 

resistance equation to predict R. This process is repeated until a 

satisfactory number of observations, say N times, is attained. The 

outcome results, R^ through R^, are then rearranged in increasing 

order of magnitude R(i), R(%),... R{N) which is defined to be order 

statistic. This rearrangement is helpful when searching for a specific 

value of R. Now the probability that R is less than a specific value, 

say, r, can be approximated by the fraction of times that this event 

occurred, i.e.. 

P(R < r) = Fj^(r) ; N = very large number (15) 
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in which j is the jth occurrence of such an event in N number of obser

vations. 

Structure Resistance Modes 

A structure generally has more than one possible independent re

sistance mode which decreases the overall reliability of the structure. 

The failure of such a structure can be conservatively modeled by taking 

the resistance modes to form a series system, i.e., unsatisfactory 

performance in any mode will cause the structure to fail. For a struc

ture with m possible resistance modes, the system resistance, R, is 

defined as the minimum of the individual mode resistances, R^; 

k=l,2, "...m. The system resistance cumulative distribution, F^fr), 

can be computed by Monte Carlo simulation or the advanced second moment 

method. Using the previously discussed simulation, one can predict the 

resistance of the possible modes, which then is used in conjunction 

with the order statistic (14) to calculate F^Cr). In the advanced 

second moment approach, Ref. (15) gives the bounds of the cumulative 

distribution F^fr) as: 

m 
Max. (F_ (r)) < F_(r) < 1 - % (l-F. (r)) (16) 

\ ^ k=l 

The lower bound assumes perfect correlation of the resistances R^, 

while the upper bound assumes statistical independence. If FR|^(r) 

are sufficiently small, then the upper bound becomes 
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m 
Fp(r) < Z Fp (r) (  17) 

^ k=l \ 

Bounds of the structure safety index, gfr), are calculated using Eq. 16 

and 

g(r) = [1 - F^fr)] (18) 

Numerical Example 

In the following discussion, an example problem is solved to 

illustrate the differences between the advanced second moment method 

(Level 2) and the Monte Carlo simulation technique (Level 3). 

Consider the (imaginary) stiffened containment with a true 2:1 

ellipsoidal head, as shown in Fig. 1, under uniform internal static 

pressure. The containment is fairly typical. The vessel can be con

sidered as a number of ring panels framed by the circumferential stiff-

eners. Therefore, the possible resistance modes for the cylinder can 

be identified as general and inter-ring modes. An asymmetric buckling 

mode or an axisymmetric limit pressure mode can occur in the contain

ment head. Criteria for the prediction of the theoretical resistance, 

R-t, for these modes under uniform internal static pressure are given 

in the Appendix. 

In-service resistance, R, is related to the theoretical resistance 

throughout a factor, Xq, referred to as modeling error. This factor 

must be considered in the uncertainty assessment analysis as one of the 

containment resistance random variables and can be expressed as; 
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where s represents the basic variability of the theoretical resistance 

with respect to experimental results, while the factor a accounts for 

the variability between experimental results and in-service conditions. 

Typical values of the statistical characteristics of the factor A are 

given by other investigators (1,16), while the mean and coefficient of 

variation (c.o.v.) of the factor 6 are given for 95% confidence in Ref. 

17. The statistical parameters and the distribution type of the random 

variables involved in the containment resistance reliability analysis 

are given in Table 1. The source of these data is Ref. 17, which con

sidered the containment thickness as random but uniform. 

The reliability analysis of the containment resistance performed 

by the Monte Carlo simulation assumed that the random variables are 

independent among the various failure modes. In other words, random 

numbers for each variable were generated independently for each mode of 

failure even though the variable may have the same nominal value in two 

or more of the failure modes. The results of the reliability assess

ment of the containment resistance are summarized in Fig. 2. As can be 

seen, the advanced second moment method provides upper and lower limits 

of the cumulative distribution of the containment vessel resistance 

(Eq. 16), and it is noteworthy to point out that the Monte Carlo simu

lation solution is within this range. 
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Simplified Reliability Approach 

Intuitively, one would expect that if the coefficient of variation 

of a particular random parameter, , is relatively small, the anal

ysis would not be affected by this parameter. This is evident when the 

Taylor series expansion about the design point is examined. In partic

ular, the coefficient of variation of the geometric parameters are 

significantly smaller than the c.o.v. of the material yield strength 

and the modeling error (see Table 1). Therefore, to assess the uncer

tainty of the containment resistance, one can conceivably consider only 

Xq and Fy to be random variables and ignore the randomness of the 

other variables. In addition, since Xq and Fy are independent 

lognormally distributed random variables, an approximate value of the 

safety index, ek, for each resistance mode can be expressed as 

The bounds on the containment resistance cumulative distribution and 

the system safety index g(r) can then be calculated using Eqs. 16 and 

18, respectively. Also, if the resistance, R {R=min{R|^)), is assumed 

to be lognormally distributed, the corresponding coefficient of 

variation can be approximately calculated as: 

(11,16) 

£n( Rj^ /r) 
(20) 
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This simplified approach is applied to the previous containment vessel. 

The resulting upper bound cumulative distribution is superimposed on 

the Monte Carlo simulation and advanced second moment results shown in 

Fig. 2. pRfr) from the Monte Carlo simulation and the simplified 

approach are rather close, while the results of the advanced second 

moment method bound both of these. This indicates that the results are 

relatively insensitive to the randomness of the geometric variables. 

Shown in Fig. 3, the results of Eq. 21 for various values of r indicate 

the small change of the coefficient of variation of the resistance. 

This implies that the containment resistance can be approximately 

considered 1ognormally distributed. 

Conclusions 

Criteria for predicting the resistance of stiffened cylindrical 

shells and ellipsoidal heads are presented. Various reliability analy

sis methods have been employed to define the statistical characteriza

tion of the containment resistance. Three different reliability 

assessments - Monte Carlo simulation, advanced second moment and a 

simplified approach - are proposed. A numerical example is given and 

the results yield the following conclusions. The Monte Carlo technique 

can be applied directly to assess the uncertainty of the containment 

resistance since explicit equations of the different resistance modes 
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are given. Large numbers of simulation points are required to predict 

an adequate statistical characterization of the vessel resistance. The 

advanced second moment provides upper and lower bounds of the cumula

tive distribution when multiple failure modes are involved. The 

simplified assessment approach is sufficiently accurate to (tefine the 

statistical parameters of the resistance because of the insignificant 

effect of the randomness of the geometric variables. Such an approach 

can be adopted for conducting practical and preliminary uncertainty 

analysis if the first two moments of the yield strength and modeling 

error are known. 

Appendix. Resistance Equations for the Containment Vessel 

Criteria for the prediction of the different containment resis

tance modes: 

A. Cylindrical Shell (18) 

i - General Mode: 

( 1 *  
V3~ Si t 

(A-1) 
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ii - Inter-Ring Mode: 

Rt ^ 
2 F . t 

DK 
+ 60) 

S2 t 
1 

(A-2) 

where 

t^ Az c 

K = 1 -
2 Fy D 

29,000,000 s2 
1 

B - 2:1 Ellipsoidal Head (19) 

i - Axisymmetric Limit Pressure: 

2 F t 50 F 
R+ = (1 + ^) (A-3) 
^ D 29,000,000 

ii - Asymmetric Buckling: 

1.25 
R. = 10.4 F^ (^) (A-4) 
^ y D 
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List of Symbols 

The following symbols are used in this part: 

AijAg = circumferential stiffener and stringer cross-sectional 

area; 

c = eccentricity of stringer centroid; 

D = containment diameter; 

f( ) = probability density function; 

Fy = material yield strength; 

F( ) = cumulative distribution; 

r = specific resistance value; 

R,Rk,Rt = minimum, kth mode and theoretical resistance, respec

tively; 

s^.sg = ring and stringer stiffener spacing; 

t = containment wall thickness; 

u-j = normalized variable; 

Vpy,VR,Vxo = material yield strength, resistance and modeling 

error coefficient of variation (c.o.v.), respectively; 

X.j = random variable; 

Xq = factor relates in-service containment resistance to 

the containment theoretical resistance; 

Z = section plastic modulus per unit length; 

— = denotes the mean value of the variable; 

a = standard deviation; 

= safety index for the ith mode; 

3 = structure safety index. 
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S = factor represents the variability of the theoretical 

resistance with respect to experimental results. 

A = factor accounts for the variability between experimental 

and in-service conditions. 

(j»( ) = density function of the standard normal van"ate; 

$ = cumulative distribution of the standard normal 

distribution. 
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Table 1. Statistical parameters of the design variables in contain
ment example 

Variable Mean c.o.v. Distribution 

D 

A, 

1200 in. 

36 in2 

50,000 psi 

1.00 

0.0033 

0.014 

0.10 

0.12 

Normal 

Normal 

Lognormal 

Lognormal 

1.00 in. 
1.25 in. 
1.50 in. 

120 in. 
180 in. 
240 in. 

0.01 
0.0096 
0.0105 

0.00167 
0.00167 
0.00167 

Normal 

Normal 
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Figure 1. Containment vessel geometry 
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Figure 2. Cumulative distribution of the containment resistance 
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Figure 3. Coefficient of variation for the containment resistance 
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SUMMARY, CONCLUSIONS AND RECOWIENDATIONS 

Summary 

In spite of the extreme precautions that are considered in the 

design and construction of nuclear power plant containment vessels, 

leakage of radioactivity does have a non-zero probability of occur

rence. To establish this probability, the structural design problem 

must be solved in light of a best estimate and uncertainty assessment 

of the containment resistance. In many cases, nonlinear finite element 

analysis has been used to analyze this type of structure. This is 

excessively expensive, particularly when all possible failure modes are 

required to perform the uncertainty analysis. An alternative approach 

to define the statistical characteristics of the containment vessel 

resistance is presented herein. 

Simplified methods based upon limit analysis theory that account 

for the effect of large deformations are presented. Methods for the 

prediction of the resistance of stiffened axisymmetric containment 

vessels (cylinders, cones, hemispherical heads, ellipsoidal heads, 

torispherical heads) under uniform internal static pressure are devel

oped. Finite element solutions were used to guide the formulation and 

to calibrate these methods. Twelve stiffened cylindrical shells were 

analyzed and the results were compared to the simplified methods re

sults. Additionally, the nonaxisymmetric behavior that may be intro

duced due to the presence of the longitudinal stiffeners was investi-
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gated. A solution of a stiffened panel was performed using three-

dimensional and axisymmetric finite element models, respectively. 

Furthermore, a typical containment vessel was analyzed using the finite 

element and the proposed approaches. 

Simplified dynamic analyses of locally loaded cylindrical shells, 

spherical shells and circular plates are given. The dynamic solutions 

are obtained by idealizing the system as an elastic-plastic single 

degree of freedom. Large deformation effects are included in the 

model. Several numerical examples are presented to demonstrate the use 

of the proposed simplified dynamic analysis methods. Again, finite 

element solutions were used to guide and calibrate the simplified solu

tions. An extensive study was conducted to investigate the effect of 

the time integration step size on the finite element results. The 

finite element geometric model and the impulse shape effects on the 

nonlinear transient dynamic analysis results were also investigated. 

A study of various reliability analysis methods is conducted. 

Three different reliability assessments - Monte Carlo simulation, ad

vanced first order second moment and simplified approach - are pro

posed. The Monte Carlo simulation technique was used to confirm the 

results of the other two approaches. A study indicated the insignifi

cant effect of the randomness of particular variables, e.g., thickness 

and radius, on the reliability analysis. This finding was used to 

develop the simplified reliability approach proposed. The statistical 

characterization of a typical containment resistance is performed using 

these three reliability assessment techniques. 
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Conclusions 

Static analysis of stringer stiffened axisymmetric cylindrical or 

conical shells under uniform internal pressure can be accomplished 

using an axisymmetric finite element idealization for the proportions 

studied. The longitudinal stiffener does not have a significant effect 

on the stiffened shell resistance when failure is due to shell and ring 

stiffener yielding (general mode). Plastic hinges form only at the 

rings while there is no moment midway between the rings when an inter

ring failure takes place. The simplified methods give good results 

when compared to the finite element results. Additionally, these meth

ods are quite useful when performing the reliability assessment since 

they can predict each possible failure mode. 

Nonlinear finite element dynamic results for impulsively loaded 

shells are sensitive to the time integration step size. To obtain an 

accurate solution with ANSYS, the problem should be solved with two 

different time step sizes, and the results should be linearly extrapo

lated to zero time step size. Deformations induced in an impulsively 

loaded shell are local, particularly as the structure reaches the non

linear stage. A uniformly distributed pure impulse adequately approxi

mates the pressure-time loading. The simplified dynamic analysis meth

ods are sufficiently accurate to predict the strain ductility of cylin

drical shells, spherical shells and circular plates. The strain duc

tility of these structures is practically independent of the radius of 

curvature. 
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The various reliability analysis methods presented, i.e., Monte 

Carlo simulation technique, advanced second moment method and the 

simplified reliability approach, can be used to define the statistical 

character of the containment vessel resistance. These methods require 

explicit formulations for each of the structural resistance modes, as 

provided by the simplified static and dynamic analysis methods. The 

simplified assessment approach is the most practical method to define 

the statistical parameters of the containment resistance. 

Recommendations 

Future work should be devoted to obtaining experimental results 

for stiffened and smooth shell structures with static and dynamic in

ternal pressure. This would help to calibrate the simplified and 

finite element methods. A complete statistical characterization of the 

modeling error is required for the reliability analysis. Further 

studies of the behavior of impulsively loaded shells are needed. Such 

studies should investigate the wave propagation and convergence problem 

(time step size selection). Simplified dynamic analysis of stiffened 

shells would be useful for the reliability assessment since many of the 

containment vessels are provided with longitudinal and circumferential 

stiffeners. A reliability method which could be coupled with finite 

element analyses for these complex structures would yield more accurate 

results of the system resistance. 
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